General solution of quasi-linear equations

Theorem 1   The general solution of a quasi-linear equation

$\displaystyle a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u),$ (1.7)

can be written in form

$\displaystyle F(\psi_1,\psi_2)=0,$

where $F$ is an arbitrary function and $\psi_1(x,y,u)=c_1$ and $\psi_2(x,y,u)=c_2$ form a solution of the equation

$\displaystyle \frac{dx}{a(x,y,u)}=\frac{dy}{b(x,y,u)}=\frac{du}{c(x,y,u)}.$ (1.8)

(PDEs of the type ([*]) are also known as Lagrange's equations. Eq. ([*]) is known as the auxiliary equation of given PDE ([*]))

Proof On the integral surface the total differential $du$ is given by

$\displaystyle du=\frac{\partial u}{\partial x}dx+\frac{\partial u}{\partial y}dy.$ (1.9)

Rewriting Eq.([*]) and Eq.([*]) in matrix form

$\displaystyle \begin{bmatrix}
a & b \\
dx & dy
\end{bmatrix}\begin{bmatrix}
u_x \\
u_y
\end{bmatrix}
=
\begin{bmatrix}
c \\
du
\end{bmatrix}.
$

On expanding the determinants, one get

$\displaystyle \frac{dx}{a(x,y,u)}=\frac{dy}{b(x,y,u)}=\frac{du}{c(x,y,z)}.$

To complete the proof, one shows that any surface generated by the integral curves of Eq.([*]) has equation of the form $F_1(\psi_1,\psi_2)=0.$

Let $\psi_1(x,y,u)=c_1$ and $\psi_2(x,y,u)=c_2$ be two independent integrals curves of Eq.([*]). Therefore,

$\displaystyle d\psi_1=\frac{\partial \psi_1}{\partial x}dx+\frac{\partial \psi_1}{\partial y}dy+\frac{\partial \psi_1}{\partial u}du=0,$

$\displaystyle d\psi_2=\frac{\partial \psi_2}{\partial x}dx+\frac{\partial \psi_2}{\partial y}dy+\frac{\partial \psi_2}{\partial u}du=0.$

Solving this gives

$\displaystyle \frac{dx}{
\begin{vmatrix}
\frac{\partial \psi_1}{\partial y} & ...
...rtial \psi_2}{\partial x} & \frac{\partial \psi_2}{\partial y}
\end{vmatrix}},$

$\displaystyle \frac{dx}{\frac{\partial (\psi_1,\psi_2)}{\partial (y,u)}}= \frac...
...}{\partial (u,x)}}= \frac{du}{\frac{\partial (\psi_1,\psi_2)}{\partial (x,y)}}.$ (1.10)

Recall: $F(\psi_1,\psi_2)=0$, where $F$ is an arbitrary function of $\psi_1$ and $\psi_2$ gives PDE

$\displaystyle \frac{\partial (\psi_1,\psi_2)}{\partial (y,u)}u_x+\frac{\partial...
..._1,\psi_2)}{\partial (u,x)}u_y=\frac{\partial (\psi_1,\psi_2)}{\partial (x,y)}.$

Therefore, one can write Eq.([*]) as

$\displaystyle \frac{dx}{a}=\frac{dy}{b}=\frac{du}{c}.$

The solutions of these equations are $\psi_1(x,y,u)=c_1$ and $\psi_2(x,y,u)=c_2$. Hence $F(\psi_1,\psi_2)$ is the required solution of Eq.([*]) if $\psi_1$ and $\psi_2$ are two independent integral curves of Eq.([*]).

Example 1.3.1   Find the general solution of

$\displaystyle (y+ux)u_x-(x+yu)u_y=x^2-y^2.$

Answer The given equation is first order quasi-linear PDE . Comparing it with the standard form

$\displaystyle a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u),$

one has

$\displaystyle a=y+ux,~b=-(x+uy)~$and$\displaystyle ~c=x^2-y^2.$

The integral surface of given PDE is generated by integral curves of auxiliary equation

$\displaystyle \frac{dx}{y+ux}=\frac{dy}{-(x+uy)}=\frac{du}{x^2-y^2}.$

To get the first integral curve:

$\displaystyle \frac{xdx+ydy}{xy+ux^2-xy-uy^2}=\frac{du}{x^2-y^2},$

$\displaystyle \implies~xdx+ydy=udu,$

Therefore,

$\displaystyle x^2+y^2-u^2=c_1.$

To get the second integral curve, consider the combination

\begin{displaymath}\begin{split}
\frac{ydx+xdy}{y^2+uxy-x^2-uxy} &=\frac{du}{x^2...
...lies~ ydx+xdy&=-du,\nonumber\\
\implies~xy+u&=c_2.
\end{split}\end{displaymath}    

Thus required integral surface if given by the arbitrary function defined as

$\displaystyle F(x^2+y^2-u^2,xy+u)=0.$

Example 1.3.2   Find the integral surface of

$\displaystyle x(y^2+u)u_x-y(x^2+u)u_y=(x^2-y^2)u.$

Answer The required integral surface is generated by the integral curves of the auxiliary equation

$\displaystyle \frac{dx}{x(y^2+u)}=\frac{dy}{-y(x^2+u)}=\frac{du}{(x^2-y^2)u}.$

To get the first integral curve

$\displaystyle \frac{xdx+ydy}{x^2y^2+ux^2-x^2y^2-uy^2}=\frac{du}{(x^2-y^2)u},$

$\displaystyle \implies~xdx+ydy=du,$

Therefore,

$\displaystyle x^2+y^2-2u=c_1.$

To get the second integral curve, consider the combination

\begin{displaymath}\begin{split}
\implies~\frac{yudx+xudy}{y^2-x^2}&=\frac{xydu}...
...s~ yudx+xudy&=-xydu,\nonumber\\
\implies~xyu&=c_2.
\end{split}\end{displaymath}    

Thus required integral surface if given by the arbitrary function defined as

$\displaystyle F(x^2+y^2-2u,xyu)=0.$