Integral surface passing through a given curve

Now suppose that we want to find the integral surface of a given quasi-semi linear PDE

$\displaystyle a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u),$ (1.11)

containing a given curve $C$ described by the parameter equation

$\displaystyle x=x(t),~y=y(t),~$and$\displaystyle ~u=u(t).$ (1.12)

Solving the auxiliary equation, one gets the general solution

$\displaystyle F(\psi_1,\psi_2)=0,$

where $\psi_1(x,y,u)=c_1$ and $\psi_2(x,y,u)=c_2$ are integral curves obtained from the auxiliary equation. Using the parameter representations, one gets

$\displaystyle \psi_1(x(t),y(t),u(t))=c_1,$

$\displaystyle \psi_2(x(t),y(t),u(t))=c_2.$

Eliminate $t$ form this two relation to obtain the relation of the type

$\displaystyle F(c_1,c_2)=0,$

which gives the particular solution of Eq.([*]) containing given curve Eq.([*]).

Example 1.4.1   Find the integral surface of

$\displaystyle x(y^2+u)u_x-y(x^2+u)u_y=(x^2-y^2)u,$

containing the straight line $x+y$ and $z=1.$

Solution From the earlier illustration, we know the integral curves

$\displaystyle \psi_1(x,y,u)=x^2+y^2-2u=c_1,$

$\displaystyle \psi_2(x,y,u)=xyu=c_2.$

Parameters in the given curves as

$\displaystyle x(t)=t~y(t)=t~$and$\displaystyle ~u(t)=1.$

Therefore,

\begin{displaymath}\begin{split}
2t^2-2&=c_1,\\
\implies~-t^2&=c_2,\nonumber
\end{split}\end{displaymath}    

Therefore,

$\displaystyle 2c_2+c_1=-2,$

and the particular solution is

$\displaystyle 2(xyu)+(x^2+y^2-2u)=-1.$