Charpit's method

Suppose one wants to solve a first order nonlinear PDE

$\displaystyle f(x, y, u, u_x, u_y) = 0$ (1.22)

As mentioned earlier, the fundamental idea in Charpit's method is to introduce a compatible PDE of the first order

$\displaystyle g(x, y, u, u_x, u_y, a) = 0,$ (1.23)

which contains an arbitrary constant $a$. Then Eq.([*]) and Eq.([*]) can be solved to give

$\displaystyle u_x = u_x(x, y, u, a), \hspace{1cm} u_y = u_y(x, y, u, a).$

This gives integrable equation

$\displaystyle du = u_x(x, y, u, a) dx + u_y(x, y, u, a) dy.$ (1.24)

When such a function $g$ has been found, the solution of Eq.([*]).

$\displaystyle F(x, y, u, a, b) = 0,$

containing two arbitrary constants $a$ and $b$ will be the solution of Eq.([*]). The conditions for such a compatible PDE $g=0$ are

$\displaystyle J=\frac{\partial(f, g)}{\partial(u_x, u_y)} \neq 0,$    and $\displaystyle [f, g]=0.$

Expanding $[f,g]=0$, one get

$\displaystyle \hspace{-1cm}f_{u_x} \frac{\partial g}{\partial x} + f_{u_y} \fra...
...ac{\partial g}{\partial u_x} - (f_y + u_yf_u) \frac{\partial g}{\partial u_y}=0$ (1.25)

This is linear PDE in $g.$ The auxiliary equations for it are

$\displaystyle \hspace{-0.5cm}
\frac{dx}{f_{u_x}} = \frac{dy}{f_{u_y}} =
\frac{d...
... + u_y f_{u_y}} =
\frac{du_x}{-(f_x + u_x f_u)} = \frac{du_y}{- (f_y + u_yf_u)}$ (1.26)

These equation is known as Charpit's equations and are equivalent to the characteristic equations. Any integral of Eq.([*]) involving $u_{x}$ or $u_{y}$ or both can be taken as the compatible PDE Eq.([*]). Then integration of Eq.([*]) gives the desired complete integral of Eq.([*]).

Not all of Charpit's equations ([*]) need to be used.
It is enough to choose the simplest of them.

Example 1.6.1   Find the complete integral of $u u_{x}^{2} + u_{y}^{2} = 4$.

Solution This is a nonlinear PDE. One will solve it by Charpit's method.

Here $f=u u_{x}^{2} + u_{y}^{2} -4.$ To find compatible PDE, the auxiliary equations are

$\displaystyle \frac{dx}{f_{u_x}} = \frac{dy}{f_{u_y}} =
\frac{du}{u_x f_{u_x} + u_y f_{u_y}} =
\frac{du_x}{-(f_x + u_x f_u)} = \frac{du_y}{- (f_y + u_yf_u)}$    

% latex2html id marker 5650
$\displaystyle \therefore~ \frac{dx}{2 u u_x} = \fr...
..._{x}^{2} + 2 u_{y}^{2}} =
\frac{du_x}{-u_{x}^{3} = \frac{du_y}{-u_y u_{x}^{2}}}$    

From the last two equations $\dfrac{du_x}{u_x} = \dfrac{du_y}{u_y}$ , which gives $u_x=a u_y$ ($a$ is constant.) The required compatible equation is $u_x=a u_y.$ Now one solve the given equation and this eq. for $u_x$ and $u_y$. Put $u_x=a u_y$ in given PDE.

$\displaystyle u a^2 u_{y}^{2} + u_{y}^{2} = 4$    

% latex2html id marker 5668
$\displaystyle \therefore u_y = \frac{\pm 2}{\sqrt{1+ a^2u}}, \hspace{1cm} u_x = \frac{\pm 2a}{\sqrt{1+ a^2u}}$    

Substitute this in equation $du = u_x dx + u_y dy$, one get

$\displaystyle du = \frac{\pm 2a dx \pm 2 dy}{\sqrt{1+ a^2u}},$

$\displaystyle \sqrt{1+ a^2u}~du = \pm 2a dx \pm 2 dy$

Integrating it,

$\displaystyle \frac{(1 + a^2 u)^{\frac{3}{2}}}{\frac{3}{2}a^2}$ $\displaystyle =$ $\displaystyle \pm 2a x \pm 2 y + 2b ~\hspace{1cm} (2b~$is constant$\displaystyle ),$  
$\displaystyle \implies~(1 + a^2 u)^{\frac{3}{2}}$ $\displaystyle =$ $\displaystyle \pm 3a^{3} x \pm 3 a^2 y + 3a^2b,$  
$\displaystyle \implies~(1 + a^2 u)$ $\displaystyle =$ $\displaystyle (\pm 3a^{3} x \pm 3 a^2 y + 3a^2b)^{\frac{2}{3}}.$  

This is the required complete integral. Check that it satisfies the given PDE and the compatible PDE.



Subsections