Compatible system of PDEs

Definition 3 (Compatible system of PDEs)   Two PDEs

$\displaystyle f(x, y, u, u_x, u_y)=0~$ and$\displaystyle ~ g(x, y, u, u_x, u_y)=0$

are said to be compatible, if they have a common solution.

Theorem 2 (Necessary and sufficient condition for compatibility)   The necessary and sufficient condition for compatibility of the two PDEs $f(x, y, u, u_x, u_y)=0$ and $g(x, y, u, u_x, u_y)=0$ is

$\displaystyle J=\frac{\partial(f, g)}{\partial(u_x, u_y)} \neq 0,$    and $\displaystyle [f, g]=0,$

where $\displaystyle [f, g] := \frac{\partial(f, g)}{\partial(x, u_x)} + \frac{\partia...
...artial(f, g)}{\partial(u, u_x)} + u_{y}\frac{\partial(f, g)}{\partial(u, u_y)}.$

Proof Given
$\displaystyle f(x, y, u, u_x, u_y)$ $\displaystyle =$ 0 (1.15)
$\displaystyle g(x, y, u, u_x, u_y)$ $\displaystyle =$ $\displaystyle 0.$ (1.16)

Solve ([*]) and ([*]) for $u_x$ and $u_y$ explicitly to get
$\displaystyle u_x$ $\displaystyle =$ $\displaystyle \varphi(x, y, u)$ (1.17)
$\displaystyle u_y$ $\displaystyle =$ $\displaystyle \psi(x, y, u).$ (1.18)

On the integral surface of the solution $u=$constant, the differential relation

$\displaystyle du = u_x dx + u_y dy$

should be integrable. Using ([*]) and ([*])

$\displaystyle du = \varphi dx + \psi dy. $

Rewrite it as

$\displaystyle \varphi dx + \psi dy - du = 0.$

This equation is in Pfaffian differential form for which one have the result.

Theorem 3 (Proof: See Chap. 1, Sec. 5 of Sneddon)   A necessary and sufficient condition that the Pfaffian differential equation $\vec{X} \cdot d\vec{r} = 0$ should be integrable is that $\vec{X} \cdot$   curl${\vec{X}} = 0$.

Using the above result

$\displaystyle (\varphi, \psi, -1) \cdot$   curl$\displaystyle (\varphi, \psi, -1) = 0,$

$\displaystyle (\phi,\psi,-1).
\begin{vmatrix}
i & j & k \\
\partial_x & \partial_y & \partial_u\\
\psi & \phi & -1
\end{vmatrix}=
0,
$

$\displaystyle \implies~\psi_x + \varphi \psi_u = \varphi_y + \psi \varphi_u.$ (1.19)

Differentiate the given first PDE ([*]) w.r.t. $x$ and $u$ which gives
$\displaystyle f_x + f_{u_x} (u_x)_x + f_{u_y}(u_y)_x$ $\displaystyle =$ $\displaystyle 0,$  
$\displaystyle f_u + f_{u_x} (u_x)_u + f_{u_y}(u_y)_u$ $\displaystyle =$ $\displaystyle 0.$  

From ([*]) and ([*]), express partial derivative of $u$ in terms of partial derivatives of $\varphi$ and $\psi$

$\displaystyle (u_x)_x = \varphi_{x},~ (u_x)_u = \varphi_{u},~ (u_y)_x = \psi_{x}, ~(u_y)_u = \psi_{u}$

Using these, one get
$\displaystyle f_x + f_{u_x} \varphi_x + f_{u_y} \psi_x$ $\displaystyle =$ $\displaystyle 0,$  
$\displaystyle f_u + f_{u_x} \varphi_u + f_{u_y} \psi_u$ $\displaystyle =$ $\displaystyle 0.$  

Multiply the second equation of the above pair by $\varphi$ and add to the first equation

$\displaystyle (f_x + \varphi f_u ) +
f_{u_x} ( \varphi_{x} + \varphi \varphi_u )+
f_{u_y} (\psi_x + \varphi \psi_u) = 0. $

Following the similar procedure with the given second PDE ([*]) results

$\displaystyle (g_x + \varphi g_u ) +
g_{u_x} ( \varphi_{x} + \varphi \varphi_u )+
g_{u_y} (\psi_x + \varphi \psi_u) = 0. $

Solving these two equations for $(\psi_x + \varphi \psi_u)$ gives

$\displaystyle \psi_x + \varphi \psi_u = \frac{1}{J} \left \{ \frac{\partial(f, g)}{\partial(x, u_x)} + \varphi \frac{\partial(f, g)}{\partial(u, u_x)} \right \}$ (1.20)

where $\displaystyle J = \frac{\partial(f, g)}{\partial(u_x, u_y)}$.

Differentiating given pair of equations w.r.t. $y$ and $u$ gives

$\displaystyle \varphi_y + \psi \varphi_u = -\frac{1}{J} \left \{ \frac{\partial(f, g)}{\partial(y, u_y)} + \psi \frac{\partial(f, g)}{\partial(u, u_y)} \right \}$ (1.21)

Put RHS of ([*]) and ([*]) in ([*]), one get compatibility condition

$\displaystyle [f, g]=0,$

where $\displaystyle [f, g] := \frac{\partial(f, g)}{\partial(x, u_x)} + \frac{\partia...
...artial(f, g)}{\partial(u, u_x)} + u_{y}\frac{\partial(f, g)}{\partial(u, u_y)}.$

Hence proof.

Example 1.5.1   Show that the PDEs $u u_{x}^{2} + u_{y}^{2} - 4 = 0$ and $u _{x} - au_{y} = 0$ ($a \neq 0$, constant) are compatible equations.

Solution Here $f = u u_{x}^{2} + u_{y}^{2} - 4$, $g = u _{x} - a u_{y}$

$\displaystyle \displaystyle [f, g] := \frac{\partial(f, g)}{\partial(x, u_x)} +...
...artial(f, g)}{\partial(u, u_x)} + u_{y}\frac{\partial(f, g)}{\partial(u, u_y)}.$

Jacobian calculations

$\displaystyle \frac{\partial(f, g)}{\partial(x, u_x)} = \left \vert
\begin{matr...
...{matrix}
u_{x}^{2} & 0 \\ 2 u u_x & 1
\end{matrix}\right \vert = u_{x}^{2}
$

$\displaystyle \frac{\partial(f, g)}{\partial(y, u_y)} = \left \vert
\begin{mat...
...u_{x}^{2} & 0 \\ 2 u_{y} & -a \\
\end{matrix}
\right \vert = - a u_{x}^{2}
$

% latex2html id marker 5597
$ \therefore$ The compatibility condition becomes

$\displaystyle [f, g] = u_x (u_{x}^{2}) + u_{y} (-au_{x}^{2}) = u_{x}^{2}( u_{x} - au_y) = u_{x}^{2} \cdot 0 = 0$

As $[f,g]=0$, the given two equations are compatible.