next up previous contents
Next: Simulation results Up: Effect of core refractive Previous: Effect of core refractive   Contents

Derivation of perturbational expression

For a bent waveguide with the refractive index distribution $ n(r)=\sqrt{\epsilon(r)}$, let $ (\boldsymbol {E}, \boldsymbol {H})$ be the full electric and magnetic field (2.1) for a given mode. Suppose that the core refractive index is slightly perturbed, and the perturbed refractive index distribution is given by $ n_{p}(r)=\sqrt{\epsilon_{p}(r)}$. For this perturbation, assuming that the mode profile remains unchanged, the corresponding perturbed mode $ (\boldsymbol {E}_{p},\boldsymbol {H}_{p})$ is approximated as

$\displaystyle \begin{pmatrix}\boldsymbol {E}_{p} \\ \boldsymbol {H}_{p} \end{pm...
...x} = P(\theta) \begin{pmatrix}\boldsymbol {E} \\ \boldsymbol {H} \end{pmatrix},$ (2.26)

where $ P(\theta)$ is an unknown function of the angular coordinate $ \theta$.

By using Lorentz's reciprocity theorem [43] in polar coordinates to $ (\boldsymbol {E}_{p}, \boldsymbol {H}_{p}, \epsilon_{p})$ and $ (\boldsymbol {E}, \boldsymbol {H},
\epsilon)$, one obtains

$\displaystyle \int_{0}^{\infty} \nabla \cdot (\boldsymbol {E}_{p} \times \boldsymbol {H}^{*} + \boldsymbol {E}^{*} \times \boldsymbol {H}_{p} ) \ r \ $   d$\displaystyle r= -$   i$\displaystyle \omega \epsilon_{0} \int_{0}^{\infty} (\epsilon_{p} - \epsilon) \boldsymbol {E}_{p} \cdot \boldsymbol {E}^{*} \ r \ $   d$\displaystyle r,$    

which upon inserting the ansatz given by Eq. (2.26) and after simplifying reduces to

$\displaystyle \frac{d P}{d \hspace{0.05cm}\theta} \int_{0}^{\infty} \boldsymbol...
...E} \times \boldsymbol {H}^{*} + \boldsymbol {E}^{*} \times \boldsymbol {H} ) \ $   d$\displaystyle r= -$   i$\displaystyle \omega \epsilon_{0} P \int_{0}^{\infty} (\epsilon_{p} - \epsilon) \boldsymbol {E} \cdot \boldsymbol {E}^{*} \ r \ $   d$\displaystyle r,$ (2.27)

where $ \boldsymbol {a}_{\theta}$ is the unit vector in the angular direction.

Inserting the bent waveguide field ansatz given by Eq. (2.1) and solving for $ P(\theta)$ leads to

$\displaystyle P(\theta)$ $\displaystyle =$ $\displaystyle P_{0} \ \exp{\left ( - \mbox{i}\omega \epsilon_{0} \frac{\int_{0}...
...tilde{E}}^{*} \times
\boldsymbol {\tilde{H}} ) \ \mbox{d}r} \ \theta \right) },$ (2.28)

where $ P_{0}$ is a constant, the superscript $ \sim$ represents the mode profile associated with the field. Thus the perturbed modal field is

$\displaystyle \begin{pmatrix}\boldsymbol {E}_{p} \\ \boldsymbol {H}_{p} \end{pm...
...E}}^{*} \times \boldsymbol {\tilde{H}} ) \ \mbox{d}r} \right)R \theta \right)},$    

and the change in propagation constant $ \delta \gamma$ due to the perturbation is given by

$\displaystyle \delta \gamma = \frac{\omega \epsilon_{0}}{R} \frac{\int_{0}^{\in...
...*} + \boldsymbol {\tilde{E}}^{*} \times \boldsymbol {\tilde{H}} ) \ \mbox{d}r}.$ (2.29)

Note that above expression can also be written in terms of modal fields $ (\boldsymbol {E}, \boldsymbol {H})$ instead of mode profiles $ (\boldsymbol {\tilde{E}},
\boldsymbol {\tilde{H}})$. The right hand side of Eq. (2.29) is a pure real number. Therefore this expression, in fact, gives the change in the real part of the propagation constant only. In Ref. [43] a similar expression for the change in propagation constant for bulk uniform permittivity perturbations of straight waveguides is derived by means of a variational principle.

The use of asymptotic expansion of H$ ^{(2)}_{\nu}(nkr)$, given by Eq. (2.5), reveals that, in the present case of bent waveguides, the integral $ \int_{0}^{\infty} (\epsilon_{p} - \epsilon) \boldsymbol {\tilde{E}} \cdot
\boldsymbol {\tilde{E}}^{*} \ r \ $   d$ r$ is undefined for the upper limit $ r=\infty$, if $ \epsilon_{p} - \epsilon$ does not vanish for large radial coordinates. Still for a uniform perturbation $ \delta \epsilon_{\mbox{\scriptsize f}} = \delta
n^{2}_{\mbox{\scriptsize f}} = n_{\mbox{\scriptsize f},p}^{2} - n_{\mbox{\scriptsize f}}^{2}$ of the core refractive index, it is well defined; in that case Eq. (2.29) simplifies to

$\displaystyle \delta \beta = \frac{\omega \epsilon_{0}}{R} \frac{\delta n^{2}_{...
...\boldsymbol {H}^{*} + \boldsymbol {E}^{*} \times \boldsymbol {H} ) \ \mbox{d}r}$ (2.30)

where $ R-d$ and $ R$ define the core interface as shown in Figure 2.1, $ n_{\mbox{\scriptsize f},p}$ and $ n_{\mbox{\scriptsize f}}$ are perturbed and unperturbed core refractive index respectively. For a small uniform perturbation of the core refractive index, using Eq. (2.30), one can approximately write

$\displaystyle \frac{\partial \beta}{\partial n_{\mbox{\scriptsize f}}} = 2 n_{\...
...boldsymbol {H}^{*} + \boldsymbol {E}^{*} \times \boldsymbol {H} ) \ \mbox{d}r}.$ (2.31)

Note that the integrals that occur in the above expression are well behaved.
next up previous contents
Next: Simulation results Up: Effect of core refractive Previous: Effect of core refractive   Contents
Kirankumar Hiremath 2005-09-23