next up previous contents
Next: Coupled mode equations for Up: Coupled mode equations Previous: Coupled mode equations   Contents

Derivation of coupled mode equation by reciprocity technique

Alternatively, the coupled mode equations (3.9) or (3.10) can be derived by means of a ``reciprocity'' technique [43]. For any two electromagnetic fields $ (\boldsymbol {E}_{p},\boldsymbol {H}_{p})$ and $ (\boldsymbol {E}_{q},
\boldsymbol {H}_{q})$ with corresponding relative permittivity distributions $ \epsilon_{p}$ and $ \epsilon_{q}$, using the Maxwell equations one can derive the following identity,

$\displaystyle \int \nabla \cdot \left(\boldsymbol {E}_{p} \times \boldsymbol {H}_{q}^{*} + \boldsymbol {E}_{q}^{*} \times \boldsymbol {H}_{p} \right )\,$d$\displaystyle x= -$   i$\displaystyle \omega \epsilon_{0} \int (\epsilon_{p} - \epsilon_{q}) \boldsymbol {E}_{p} \cdot \boldsymbol {E}_{q}^{*}\,$d$\displaystyle x,$ (3.11)

commonly known as ``reciprocity identity'' or ``Lorentz reciprocity theorem''.

Apply Eq. (3.11) for $ (\boldsymbol {E}, \boldsymbol {H},
\epsilon)$ and $ (\boldsymbol {E}_{wj},
\boldsymbol {H}_{wj}, \epsilon_{w})$. After straightforward manipulations with the coupled mode field ansatz (3.3) leads to

$\displaystyle \hspace{-3cm} \sum_{v=\mbox{\scriptsize b},\mbox{\scriptsize s}} ...
...ymbol {H}_{vi}) \ \mbox{d}x\ \frac{\mbox{d} C_{vi}}{\mbox{d}z} \hspace{0.5cm} +$    


$\displaystyle \hspace{-4.5cm} \sum_{v=\mbox{\scriptsize b},\mbox{\scriptsize s}...
...*} + \boldsymbol {E}_{wj}^{*} \times \boldsymbol {H}_{vi}) \ \mbox{d}x \ C_{vi}$    


$\displaystyle \hspace{4cm} = -$i$\displaystyle \omega \epsilon_{0} \sum_{v=\mbox{\scriptsize b},\mbox{\scriptsiz...
...on_{w}) \boldsymbol {E}_{vi}\cdot \boldsymbol {E}_{wj}^{*} \ \mbox{d}x\ C_{vi}.$ (3.12)

By applying the ``reciprocity identity'' for the second term on the left hand side of Eq.(3.12), and combining it with the right hand side, one obtains

$\displaystyle \hspace{-3cm} \sum_{v=\mbox{\scriptsize b},\mbox{\scriptsize s}} ...
...dsymbol {H}_{vi}) \ \mbox{d}x\ \frac{\mbox{d} C_{vi}}{\mbox{d}z} \hspace{0.5cm}$    


$\displaystyle \hspace{4cm} = -$i$\displaystyle \omega \epsilon_{0} \sum_{v=\mbox{\scriptsize b},\mbox{\scriptsiz...
...on_{w}) \boldsymbol {E}_{vi}\cdot \boldsymbol {E}_{wj}^{*} \ \mbox{d}x\ C_{vi}.$ (3.13)

Rewriting Eq. (3.13) in terms of the coefficients $ {\sf {M}}_{vi,
wj}$, $ {\sf {F}}_{vi, wj}$ given by Eqs. (3.7), (3.8) leads to the coupled mode equations (3.9).


next up previous contents
Next: Coupled mode equations for Up: Coupled mode equations Previous: Coupled mode equations   Contents
Kirankumar Hiremath 2005-09-23